
The Role of Liquidity in
Futures Market Innovations
Charles J. Cuny
University of California, Irvine

I characterize the optimal design of a new futures
market (an innovation) by an exchange in the
presence of market frictions. Futures markets am
characterized by both the contract and the level of
trader participation both can be determined by
an exchange. A game in which exchanges simul-
taneously design markets is considered, and a par-
ticular equilibrium (not necessarily unique) is
constructed. A game in which exchanges sequen-
tially design markets (and incur design costs) is
also considered and the (generically unique) equi-
librium is constructed. The nature of equilibrium
with multiple exchanges is discussed in these
simultaneous and sequential settings, illustrating
the role played by liquidity considerations both in
market design and in the nature of competition
between exchanges.
Financial markets have seen a great number of inno-
vations over the last 25 years, and futures markets are
no exception. It is important to understand which
new securities are expected to be popular and, there-
fore, offered to the investing public. In the context
of futures markets, the question becomes, Which new
futures contracts (innovations) are likely to be
designed and offered by exchanges? Clearly, any deci-
sion-maker thinking about opening a new security
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market should consider not only the securities that investors would
like to trade but also the securities that investors can already trade.
A futures exchange’s optimal innovation must therefore recognize
the current structure of futures markets. In this article, I characterize
the futures innovation most preferred by an exchange, considering
both the contracts traders desire and the contracts already available.
Innovation by multiple exchanges is also characterized, and the inter-
action of innovations on one another is described.

Far from being static, futures exchanges are constantly innovating
contracts. Silber (1981) counts 52 contract innovations from 1960
through 1969 and 102 from 1970 through 1980. Miller (1986) calls
the introduction of financial futures the “most significant financial
innovation of the last twenty years” (p. 463). Moreover, not all new
futures contracts are successful. Silber regards about one quarter to
one third of the new contracts in the period 1960 through 1977 as
“successes.”

Contract design is often explained with a contract-specific approach,
typically a case study describing the success or failure of a particular
contract. Sandor (1973), for example, presents a case study of plywood
futures, and Silber (1981) examines silver, gold, and GNMA futures.
Success or failure of a new (or changed) contract in these studies
generally hinges on some contract-specific quality, either [in the lan-
guage of Black (1986)] a commodity characteristic (for example, stor-
ability or homogeneity) or a contract characteristic (for example,
contract size or delivery specification). Case-by-case analysis seems
unsatisfactory with respect to a general theory of contract innovation,
although it often offers insight on individual contracts.

In this article, I emphasize the primary role of the hedger in the
existence of a futures market, an approach traceable to Working (1953).
In this view, a futures market owes its existence to the demand gen-
erated by hedgers. Although, to some extent, hedgers may take posi-
tions that offset each other, a futures market normally must attract
more liquidity (in the form of additional traders) to become truly
successful. Thus, a successful futures market displays two qualities:
a contract providing hedgers with a high-quality (low-residual-risk)
hedge and a liquid market. Telser (1981) argues that liquidity is the
key difference between futures and forward markets, suggesting “the
demand for a fungible financial instrument traded in a liquid market
is necessary for the creation of an organized futures market” (p. 8).

The hedger’s need for both a good hedge and a liquid market is
sometimes framed as a trade-off between a high-quality hedge in an
illiquid contract and a lower-quality hedge in a liquid contract. Black
(1986) calls use of a lower-quality hedge in a liquid contract “cross
hedging” and argues that certain contracts failed because of the pres-
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ence of a competing cross-hedge. Working (1953) gives the history
of the short-lived North Pacific Coast wheat futures contract. Prices
of Pacific Northwest, a soft wheat, were only loosely related to prices
of the hard wheat traded in Kansas City and Chicago, giving “a very
imperfect hedge for soft wheat in the Pacific Northwest” (p. 337).
Although the Chicago Board of Trade introduced a Pacific Northwest
wheat contract in 1950, Pacific Northwest hedgers opted to trade hard
wheat futures, which offered an imperfect but liquid hedge, rather
than switch to the new soft wheat future, a closer but less liquid
hedge. (As a result, the new contract was never successful.) Similar
stories can be told for grain sorghums [better hedged with corn:
Hieronymus (1977)], 90-day commercial paper [better hedged with
Treasury bills: Cornell (1981)], barley [better hedged with corn: Gray
(1970)], and flour [no futures market developed; better hedged with
wheat: Gray (1970)]. Silber (1981) warns about competing against an
exchange with established liquidity, an advantage “usually too much
to overcome” (p. 132).

The idea of contract choice tied together with liquidity is central
to this article. Exchanges are taken to be entrepreneurial entities that
design markets in a world of imperfect liquidity. Markets are char-
acterized by both the contract offered and the number of traders
participating. There seem to be two possible natural objectives for
the exchange. In Silber (1981) and Black (1986), exchanges maxi-
mize transaction volume. In Duffie and Jackson (1989), exchanges
maximize transaction volume; since exchanges charge a (preset) fee
per transaction, they are also maximizing their own revenues. In this
article, exchanges maximize their own revenues. Revenues arise,
however, by charging traders one (endogenous) market entry fee, in
contrast to Duffie and Jackson’s fee per transaction.

Optimal market innovation is a sensible question only in an incom-
plete-markets setting. The model features incomplete markets in which
market entry costs impede full risk sharing. Traders participate either
to hedge risk from an uncertain endowment (“hedgers”) or to be
compensated for acting as risk sharers (“investors”). Friction arises
in two ways: investors are constrained to enter only one market, and
must pay a fee (which may vary across markets) to enter at all. Inves-
tors are thus forced to specialize in a single market (in particular,
they cannot “spread” between markets). Of course, investors are most
interested in entering a market with high demand for their services
(substantial hedging). Hedgers are allowed to trade in all markets
without incurring transaction costs. Liquidity of a market (market
depth) is found to depend both on the number of traders in that
market and on the presence of markets with similar contracts.

The fee structure lends itself to the following interpretation. Inves-
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tors can be thought of as exchange members: their normal business
is to provide liquidity services to hedgers. The entry fee can be inter-
preted as the price of a seat on the exchange. In contrast, hedgers
are not normally in the business of providing liquidity (and may in
fact wish to trade only occasionally). In the spirit that a successful
contract must attract hedgers’ business, hedgers face no entry fees in
this model.

Each exchange may design one market, selecting both the contract
traded and the number of investors entering (implicitly setting an
entry fee) to maximize its revenues. (In the above interpretation,
exchanges maximize the total value of their seats.) In contrast,
exchanges in Duffie and Jackson select only a contract and try to
maximize volume (and revenues). Furthermore, with the same traders
participating in each market, Duffie and Jackson have no variation of
liquidity across markets. Anderson and Harris (1986) present a model
of sequential innovation in which exchanges, faced with uncertain
demand for a contract, select only the time to begin innovation.

An exchange’s optimal innovation is found to match a common
intuition: contracts are designed to service the greatest possible resid-
ual hedging demand, after accounting for hedging that can be done
in other markets. An exchange’s optimal innovation is not necessarily
Pareto-optimal (even in the case of a single exchange), since the
exchange’s objective is to collect fees from investors, although not from
hedgers. They therefore tend not to open markets where hedges
balance, even though potential volume may be high. With simulta-
neous innovation, each exchange tries to find its own niche, and
similar contracts are designed only if the hedging demand for them
is large. In equilibrium, similar contracts require high liquidity in
the form of high trader participation. With sequential innovation,
exchanges that move early choose contracts to serve the highest hedg-
ing demand, and make sure liquidity is high enough to deter potential
competitors. In equilibrium, contracts are orthogonal, and the con-
tracts serving the most hedging demand have the highest liquidity.

The article is structured as follows. In Section 1, I model trading,
involving a continuum of hedgers and a continuum of investors. In
Section 2, I describe equilibrium pricing, taking the set of contracts
and investor entry as given. In Section 3, I endogenize the contract
and investor entry. An exchange chooses both of these (“inno-
vates”) with the objective of maximizing the total entry fees collected
in their market (taking the other markets into account). It is shown
that the innovation chosen may not be Pareto-efficient. In Section 4,
I consider a game with exchanges simultaneously innovating. Equi-
librium is not necessarily unique; one particular equilibrium is con-
structed. Interaction of markets and the nature of competition between
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exchanges are discussed. In Section 5, I consider a game with
exchanges sequentially innovating. Here, exchanges incur a fixed cost
when innovating; some exchanges may therefore not innovate at all.
The (generically unique) equilibrium is constructed. The effect of
competition and the threat of competition between exchanges is
discussed. I conclude in Section 6. Proofs appear in the Appendix.

1. Trading

There are T trading periods in the model; at the end of each period,
uncertainty is resolved, and random endowments are received. Uncer-
tainty in period t is characterized as an r-dimensional standard normal
random variable    independent across time. There are m
organized markets    indexed by i. A futures contract Di is
defined as an r-dimensional unit vector. Contract Di pays off   in
period t, with 

There are two types of traders: hedgers and investors. Traders have
exponential utility over final wealth; for simplicity, all traders have
the same absolute risk aversion γ. There is a mass of H hedgers;
hedger h receives random endowment     in period t, where Ebt is
a known r-dimensional vector. (Because demand for risky assets is
independent of wealth under exponential utility, adding constant
endowments has no effect on any results.)   Let  represent
aggregate endowment for period t. Each hedger may enter all m
markets each period to trade, incurring no cost of entry.

Investors have no random endowment; they act solely as risk shar-
ers. There is a potentially unlimited mass of investors. Investors are
constrained to trade either in one market (for all T periods) or not
at all. If we interpret investors as exchange members, then physical
presence at the exchange and the cost of specializing in a market
provide barriers to trading in more than one market. (Because hedgers
face endowment risk, the costs of trading in multiple markets are
assumed to be small enough relative to the hedging risk to be treated
as fixed costs not affecting hedgers’ decisions.) Investors choose which,
if any, market to enter and trade in before period 1 begins. An investor
entering market i incurs a one-time fee (membership cost) of ki. Since
the set of entered traders is the same each period, (any measure of)
market liquidity should be independent of time.

Traders all act as price-takers and submit demands each period.
Hedgers submit demands to each market, whereas investors submit
demands to the single market (if any) they entered. Demands in
period t may depend on pt, that period’s vector of futures prices. No
restrictions on short sales are made. A market-clearing price vector
is chosen each period, and demands are fulfilled at that price. Con-
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tracts traded may be considered payable (or collectible) when uncer-
tainty is revealed and endowments are paid.

Traders face mean-variance maximization problems each period
because utility is exponential, and uncertainty is normal and inde-
pendent across periods. Hedger h selects an m-dimensional vector

 of demands for each period t to maximize

where D is the r × m matrix whose ith column is Di. The first term
in (1) is the mean, and the last terms are the variance of the hedger’s
overall position (futures plus endowment) for period t.

An investor who has entered market i selects a scalar demand
 for each period t to maximize

Investors make their entry decisions before period 1. This implies
investor entry until the certainty equivalent value for an investor
trading in market i equals the entry cost ki. Let ni, be the mass of
investors in market i, and N be the m × m diagonal matrix with
entries ni. Define a contract pair  as a futures contract and
the mass of investors in market i. Define a market structure as a set
of contract pairs.

2. Trading Equilibrium

Define a trading equilibrium for a market structure 
≤ m} as a vector of market-clearing prices, such that all traders are
submitting optimal demands. Trader problems (1) and (2) are max-
imizations of quadratics; their solutions are as follows.

if DTD is nonsingular. The net demand across hedgers is then

If DTD is singular, some contract is redundant; an arbitrary set of
prices may lead to an arbitrage opportunity, with demands not well
defined.

Lemma 2. The solution to an investor in market i's problem (2) is
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The net demand across investors is

Because futures contracts are in zero net supply, the requirement
for market clearing in period t is

This can be solved for equilibrium prices. I also wish to characterize
market liquidity: in particular, market depth (the order size required
to change prices a given amount). It is convenient to first characterize
market illiquidity. Define market shallowness (the “inverse” of depth)
as the amount prices change for some exogenous demand shock. To
be precise, for an exogenous demand shock vector ui, market clearing
requires

Market shallowness is the m × m matrix  implied from market
clearing. Shallowness is characterized by a matrix because an exog-
enous demand shock in one market can affect the price in another
market via hedgers, who trade in multiple markets,

Lemma 3. The trading equilibrium price vector    is

if all markets have some investor entry. Market shallowness is then

If DTD is nonsingular (no redundant contracts), the matrix inverse
of market shallowness,  measures market depth.
The diagonal terms   are depths for individual markets. In
general, individual market depth depends on the number of traders
in that market and on the presence of nearby markets. However, for
the special case where contract Di, is orthogonal to all other contracts,
individual market depth i reduces to  Market i’s depth
is then proportional to the number of traders in market i; there is no
price interaction with other markets.

Consider the entry decision for investors. Define the  sym-
metric matrix

as the net hedging demand. Assume rank  so the entire uncer-
tainty space is relevant with respect to aggregate risk. Lemma 4 states
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the certainty equivalent value of an investor who enters and trades
in one market for T periods.

Lemma 4. In the trading equilibrium for the market structure 
 the certainty equivalent value of trading for an

investor in market i is

where

or, equivalently,

and  matrix obtained by deleting column Di

from D.

The matrix Gi, which affects market i investors, captures the impact
of the other (m - 1) markets. Multiplying net hedging demand by
Gi can be interpreted as factoring out that part of the demand that
can be satisfied by using other markets. For instance, if all other
markets somehow had unlimited risk-sharing capability 
Equation (6) shows that Gi would annihilate the subspace spanned
by  Hedging demand within this subspace would be completely
satisfied and market i would face zero demand for hedging within
this subspace. Generally, since investor entry is limited, this hedging
demand is not completely factored out. Since the matrix Gi factors
out the risk already hedgeable through other markets, Gi will be called
the factoring matrix.

Since S represents the net hedging demand across periods, and Gi

factors out demand already satisfied, the numerator of (4) measures
the amount of hedging satisfied by contract  The more hedging
demand satisfied by contract  the higher the certainty value of
trading for a market i investor. Therefore, more investors will tend
to enter this market: liquidity flows to markets that are good hedges.

. Exchanges

Lemmas 3 and 4 characterize the trading equilibrium, taking the
market structure (contract pairs) as given. Market structure is now
endogenized by introducing optimizing exchanges. Assume there are
m exchanges, each able to open one market. Each exchange i is
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allowed to select a contract Di and an entering number of investors
n,. An exchange may collect a (membership) fee ki from each investor
entering its market. The maximum fee collectible per investor is given
by the investor’s certainty value of trading (4) from the trading equi-
librium. Exchanges are assumed to maximize the total fees collected
in their market, recognizing the market structure of the other markets

 The optimal innovation (contract pair) problem for
a single exchange is first solved; the optimal innovation by multiple
exchanges is then considered.

Optimal innovation by a single exchange requires selecting a con-
tract Di, and a number of entering investors ni to maximize exchange
revenue, recognizing trading equilibrium condition (4) and taking
the remaining market structure as fixed. The effect of the remaining
market structure is fully captured in the factoring matrix Gi. The
innovation problem for exchange i is

Optimal innovation by a single exchange is characterized in the fol-
lowing proposition.

Proposition 1. The solution to a single exchange’s optimal innova-
tion problem (7) is  where  is the maximal unit eigenvector
of    is its associated eigenvalue. Also,

(The maximal eigenvector is the eigenvector with the greatest eigen-
value.) If SGi, has a unique maximal eigenvector, then the solution
to (7) is unique.

The net hedging-demand matrix S measures desired hedging over
both risk space and time. Since  net hedging demand is
decomposable into a sum (over time) of least-squares projections of
single-period demands. Multiplying by Gi factors out hedging demand
already provided by other markets. Therefore, SGi represents unsatis-
fied, or residual, hedging demand. Selecting the maximal eigenvector
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of SGi amounts to aligning the contract Di with the greatest residual
hedging demand.

The optimal values of ni and ki given by Proposition 1 illustrate
the nature of interaction between markets. From Equation (5) or (6),
note that  tends to be small when other exchanges have similar
contracts  with substantial depth (n, large). For an
exchange whose contract faces such competition  is small),
the optimal response is to make sure that its contract also offers depth
by selecting a large ni. Of course, this means that the fee ki must be
low. In contrast, the optimal response of an exchange whose contract
faces little competition  is to obtain high fees by
selecting a small ni in an exercise of (local) monopoly power.

When selecting a contract, an exchange aligns itself with the great-
est unsatisfied hedging demand (maximal eigenvector of SGi). An
exchange thus desires a contract with substantial hedging demand
that is not already satisfied by existing contracts. Each exchange tries
to locate its contract in its own niche, so revenues do not suffer
because of competition from nearby contracts.

Net hedging demand S depends on aggregate endowments. Hedg-
ers who could offset one another’s positions (thus providing liquidity
and risk sharing for each other) “cancel out” when endowments are
aggregated, and do not affect S. Since hedgers only enter exchanges’
decision making through S, this demand generates no need for addi-
tional investors and goes unrecognized by exchanges. For this reason,
an exchange’s optimal innovation is not necessarily Pareto-optimal,
as the following example illustrates.

Example 1 (Pareto inefficiency). There are two hedgers, each of unit
mass (H = 2), one period (T = l), and one exchange (m = 1). A
hedger’s certainty equivalent value of trading can be calculated (sim-
ilar to Lemma 4):

since  Exchange revenues are  Let individual
endowments be

hence, aggregate endowment E1 and net hedging demand S are

[Although S is not of full rank (a technical requirement), adding a
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second period could correct this at the cost of obscuring the intuition.]
The optimal contract for the exchange is clearly

Also                                      ,  If the exchange instead
chooses contract

then hedgers receive  although  For
 contract  is Pareto-superior to  even if the exchange

distributes collected revenues to the hedgers.
In this example, for large α, the hedgers would like to trade contract
  The exchanges have no incentive to open such a market, however,

since there is no need for investor entry. Thus, the exchange selects
a contract that yields less overall risk sharing.

This result contrasts with Duffie and Jackson (1989), who find Pareto
optimality with a single exchange and a single period. The difference
is due to different sources of exchange revenue: revenue here is
collected from investors; revenue in Duffie and Jackson is collected
from hedgers. In Duffie and Jackson, inefficiency arises in multiple
trading periods because of trading turnover; here, inefficiency arises
because the need for risk sharers need not coincide with the need
for hedging.

. Simultaneous innovation

I now consider a game with simultaneous choice of contract pairs
by m exchanges. As before, each exchange maximizes total investor
fees, taking the rest of the market structure as given. I take Nash
equilibrium as the solution concept.

Proposition 2. An equilibrium exists in the simultaneous innovation
game. Optimal contract pairs    are characterized by Propo-
sition 1.

The proof of equilibrium is constructive. Define

which can be interpreted as the factoring matrix an (m + 1)st (shadow)
exchange would face. The equilibrium constructed has the property
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that SG, restricted to the span of D, is proportional to the identity
matrix. Of course, SG is identical to S off the span. An (m + 1)st
exchange would therefore be indifferent between all contracts in this
span. This particular equilibrium is symmetric, then, in the sense that
unfilled hedging demand (over hedges actually served) is equal across
risk space.

Equilibrium need not be unique in the simultaneous innovation
game. Example 2, for instance, considers a simultaneous innovation
game with two exchanges where, depending on the parameters, there
may or may not be multiple equilibria. Note that all information about
hedgers relevant for equilibrium is captured in the matrix S. Without
loss of generality, S can be taken to be diagonal (this amounts to a
change of basis).

Example 2 (two exchanges; simultaneous innovation). There are two
exchanges (m = 2). Let

with a > b > c > 0. We consider two cases that differ in the variability
of aggregate endowments through time.

Case 1. a > 2b. There is a unique equilibrium (up to relabeling
exchanges and multiplying contracts by - 1). The contracts chosen
are

with eigenvalues  Investor entry is

The matrices SGi, are

where  It is easy to check that D1 and D2 are maximal
eigenvectors with respect to SG1 and SG2.

Case 2. a ≤ 2b. There are two equilibria: the first is described in
case 1; the second takes the form
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with eigenvalues  Investor entry is n1 = n2 = H.
The matrices SGi are

and D1 and D2 are clearly maximal eigenvectors.
Since there are only two exchanges, the third dimension of risk

space, with the least net hedging demand, is ignored. The equilibrium
of case 1 is symmetric: the two contracts are comparably aligned to
the net hedging demand, and exchange profits (proportional to λi )
are equal. This is the previously mentioned constructible equilibrium.
The equilibrium of case 2 is asymmetric: each exchange serves a
different dimension of risk, and exchange profits are unequal.

I next examine the nature of competition between exchanges,
focusing first on any two exchanges (in a simultaneous innovation
game with m ≥ 2). The similarity (high correlation) of two contracts
implies competition through liquidity, in the sense that the two
exchanges increase investor entry in order to increase their market
share. The following proposition gives a lower bound on investor
entry.

Proposition 3. For any two markets i and j in a simultaneous inno-
vation equilibrium,

where the correlation of the payoffs offutures contracts i and j is

If there are only two exchanges, the inequality holds with equality.

By calculating an upper bound on investor entry, one gets an upper
bound on similarity of contracts.

Corollary. For any two markets i and j in a simultaneous innovation
equilibrium,
69



5.
where     are the largest and smallest eigenvalues of S, respec-
tively.

Corollary. In a simultaneous innovation equilibrium, no two
exchanges choose the same contract.

This illustrates the nature of the competition for the hedger’s busi-
ness. If contracts are highly correlated, exchanges compete for the
same hedging demand. Exchanges compete by offering more liquidity
in the form of more investors at their market. To accomplish this
necessitates settling for lower per-investor fees; thus competition
drives down overall revenues for an exchange. In the extreme, if two
exchanges selected identical contracts, the resulting Bertrand-like
competition in the size of the fee the exchange is willing to accept
drives profits to zero. Beyond a certain point, each exchange could
do better by selecting a less-contested contract with less hedging
demand to begin with. Thus, in equilibrium, each exchange finds its
own niche (a relatively uncontested contract) to be able to exercise
some monopoly power (in selecting investor entry and, implicitly,
fees).

Proposition 3 and its corollaries show that no two contracts are too
highly correlated. I consider the entire market structure as a whole
in Proposition 4 and achieve a similar result.

Proposition 4. In a simultaneous innovation equilibrium, rank 
> m/2.

The intuition of this result is similar to that of the corollaries to
Proposition 3. If m exchanges try to locate their contracts in a sub-
space of dimension no more than m/2, then, loosely speaking, the
“average” dimension of risk space has at least two contracts serving
it. With two exchanges per dimension, exchanges are in Bertrand-
like competition over setting (implicit) fees; fees and revenues are
then driven to zero. Exchanges have an incentive to switch to a con-
tract in an uncontested dimension of risk space. This incentive is
present as long as rank  Again, in equilibrium, each
exchange selects a contract to allow itself some monopoly power in
selecting investor entry.

 Sequential Innovation

I next consider a game with sequential choice of contract pairs by
exchanges. Additionally, a fixed cost of design and innovation is
imposed on each exchange that chooses to open a market. Therefore,
some exchanges may decide not to innovate. In equilibrium, contracts
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are orthogonal, and exchanges provide sufficient liquidity in their
market to preempt potential competitors.

The number of exchanges is potentially unlimited (although no
more than renter in equilibrium). Each exchange, in order, decides
whether to innovate, thus incurring a fixed (setup or design) cost C,
before any trade takes place. An exchange that decides to innovate
selects a contract Di, and a number of investors ni entering its market
(thus implicitly setting a fee ki). An exchange maximizes its net
revenues  (total investor fees minus innovation cost),
recognizing both previous innovations and the possibility of subse-
quent innovations. (I adopt the convention that exchanges only
innovate if they receive strictly positive net revenues.) Thus, subgame
perfection is the solution concept. Proposition 1 does not characterize
an optimal innovation in this context, since the behavior of exchanges
that have yet to move (contained in Gi) cannot be taken as given.
Optimal innovation in this setting must recognize the sequential
nature of the game and the ability of early innovators to affect later
innovators. Proposition 5 characterizes the sequential innovation
equilibrium.

Proposition 5. An equilibrium exists in the sequential innovation
game. Contracts chosen (Di) are the eigenvectors of S with eigen-
values 

Futures contracts chosen are orthogonal. If the eigenvectors of S are
distinct, equilibrium is unique.

In sequential innovation equilibrium, the first exchange to move
selects the contract that aligns with the highest net hedging demand
(D1 the maximal eigenvector of S). Investor entry is chosen to be
large enough to satisfy most of the hedging demand in the direction
D1. More precisely, residual hedging demand in direction Di is made
so small that an exchange opening an identical contract cannot collect
enough revenues to cover its fixed cost. If the first exchange faces
low hedging demand  the monopolistic level of inves-
tor entry  is enough to deter competitors. If it faces high
hedging demand  it would still like to exercise
monopoly power to keep fees high. The threat of potential compe-
tition prevents this exchange from doing so. To deter competitors,
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the exchange increases investor entry to  This
guarantees that no other exchange will find it profitable to design a
contract similar to D1 ; subsequent contracts will be orthogonal to D1 .

The second exchange to move selects the contract that aligns with
the highest unfilled net hedging demand (D2, the second largest
eigenvector of S). Again, a sufficiently high level of investor entry n2,
is chosen to preempt other exchanges from selecting the same con-
tract. The process continues with other exchanges until no profitable
potential contracts remain.

Since contracts are orthogonal, trade in one market does not affect
trade in another. Therefore, the depth of market i is measured simply
by  as discussed in Section 2. In selecting ni, exchange
i in fact chooses the liquidity (market depth) of its futures contract.

In a sequential innovation equilibrium, the number of markets
innovated equals the number of eigenvalues of S greater than 
(which is bounded above by r). Both liquidity and exchange revenues
are increasing in net hedging demand served (measured by  Con-
tracts serving high hedging demand  have high liquid-
ity (market depth of  contracts serving moderate hedging
demand  have minimum liquidity (market
depth of  contracts that would serve low hedging demand (X,

 are never innovated. Since exchange revenues are increas-
ing in  exchanges that innovate first have an advantage. I close
with an example of a sequential innovation equilibrium.

Example 3 (sequential innovation). There is a unit mass of hedgers
 with risk aversion  Suppose the innovation cost C = 1

and

Two contracts are innovated: D1 and D2, where

Exchange 1 chooses a market depth of  to deter entry along
D1. Exchange 2 chooses the minimal market depth of 
more than enough to deter entry along D2. Exchange 1 makes 

 exchange 2 makes  Exchange 3
faces a residual hedging demand matrix with eigenvalues of 8, 7.5,
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and 5; it needs an eigenvalue above 8 to obtain a positive profit, so
it does not innovate.

6. conclusion

I have presented a model of market innovation in which exchanges
compete to be able to share the risk of the hedgers. Market frictions
take two forms: (1) exchanges charge a membership fee to investors
entering their market, limiting the entry and risk sharing that can
take place; and (2) investors are allowed to enter only one market,
and their risk-sharing ability is therefore limited.

Exchanges choose both a contract and the number of investors who
enter their market (and, implicitly, the entry fee), taking the market
structure (contracts and investors in other markets) into account.
Exchanges have the objective of maximizing their total revenue col-
lected through fees. Hedgers trade in all markets; investors trade only
in their chosen market. Liquidity, the ability of a market to absorb
risk, depends on the total number of traders in that market and on
the structure of similar markets.

The optimal innovation for a single exchange (the revenue-maxi-
mizing contract and investor entry level taking other markets as fixed)
is derived. An exchange optimizes in two ways: (1) choosing a con-
tract to fill hedging demand not met by other exchanges, and (2)
using the resulting monopoly power to limit investor entry, keeping
fees high. Innovations need not be Pareto-optimal, since an exchange
considers net hedging demand, while substantial offsetting hedging
demand may be present.

A simultaneous innovation game is considered. Equilibrium need
not be unique, but a particular equilibrium with symmetric properties
is described. Exchanges that select highly correlated contracts would
implicitly compete in a Bertrand-like manner over fees, decreasing
overall revenues. To avoid this, exchanges try to find a niche by
offering dissimilar contracts. In equilibrium, the correlation of the
contract payoffs for any two markets is bounded away from unity.
Similar contracts exhibit high liquidity in the form of high investor
entry.

A sequential innovation game is also considered, where exchanges
must incur fixed costs in order to innovate and recognize their effect
on later potential innovations. Equilibrium is generically unique.
Exchanges that innovate first are at an advantage; they can choose
contracts to serve the highest hedging demand. The threat of later
innovations with a similar contract forces the exchange to choose a
high level of investor entry, preempting potential competitors com-
pletely. In equilibrium, contracts offered are orthogonal. Contracts
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serving the highest hedging demand offer the highest liquidity, con-
tracts serving moderate hedging demand offer a minimal liquidity,
and contracts that would serve low hedging demand are not profitable
enough to be offered.

Appendix: Proofs

Proof (Lemmas 1, 2). Take first-order conditions and aggregate over
traders.

Proof (Lemma 3). Using Lemmas 1 and 2 and market clearing, one
can write

This immediately yields the market shallowness matrix; setting ui =
0 yields 

Proof (Lemma 4). Let 
row of  Substitute from Lemmas 2 and 3 into problem (2) to get

Write B as

where  matrix remaining after deleting
the ith row and ith column of B, and  matrix
remaining after deleting the ith column of D. Define the matrix Gi

 It can be shown by direct calculation that

where  and the ith row and ith column have
been put in the first place. Therefore,

Substitute into the CEV, expression above to get (4). Now
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Proof (Proposition 1). First maximize

over ni. The first-order condition yields  substituting
back reduces optimization (7) to

If we temporarily disregard the (unit-normalizing) constraint, the
first-order condition on Di implies

Premultiply by  to get

Therefore, Di is an eigenvector of SGi with eigenvalue 
 Since this is the quantity being maximized, choose the largest

eigenvalue. Finally, normalize Di to be a unit vector. n

Proof (Proposition 2). Available from the author on request. n

Proof (Proposition 3). Let  In equilibrium,
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Cross-multiplying and using symmetry give

Therefore,  (For only two exchanges, the inequal-
ities above are equalities.) Since 

Therefore,  a contradiction.

Proof (Corollaries). Note  In equilibrium,

since  is a lower bound on  is the smallest eigenvalue
of S-l. Noting that

proves the first corollary; noting that  proves the second.

Proof (Proposition 4). Available from the author on request.

Proof (Proposition 5). For some sequential innovation equilibrium,
write

Let l be the largest eigenvalue of SG. For a potential additional
exchange x,

If  will not enter. Conversely, if λ >
 then x will enter.

A potential exchange entering after x faces

Choosing Dx as the maximal eigenvector of SG can deter further entry
and be profitable for x. If 
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 Thus, a contract Do can be profitable for the
exchange moving after 

I now show, via induction on i, that exchanges open markets, in
order, along the largest eigenvectors of S (for eigenvalues > 8HC/
γ) and select n’s to deter future competitors. Exchange i faces

subject to maximum eigenvalue  There are two cases.
Case 1. If the threat of competition is nonbinding, the problem

reduces to

From the proof of Proposition 1, take  to be the maximal eigenvector
of  (with eigenvalue  The threat is non-
binding 

Case 2. If the threat of competition is binding,

so . By substituting

(increasing in 
 the optimum is found. Choose  to be

the maximum eigenvector of 
 so entry along D i is deterred. Therefore,
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Exchange 1 sets D1 to the largest eigenvector of S and chooses
exchange 2 then opens D2 along the largest eigenvector

of   (the second largest eigenvector of S), continuing until all
eigenvalues(S ) > 8HC/γ are used. n
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